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The suppression by a parametric harmonic action of noise-induced oscillations in an underdamped pendulum
with nonlinear friction, recently reported by Landaet al. @Phys. Rev. E56, 1465 ~1997!#, is studied in an
approximately soluble model system. In the high-frequency limit, a process of consecutive averaging over two
widely different relevant time scales reveals the analogy of the problem with a noise-induced transition whose
critical point is changed by the driving term. The obtainment of analytical results for the probability distribu-
tion function and the spectrum allows us to understand and control the effect.@S1063-651X~99!04302-0#

PACS number~s!: 05.40.2a
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The presence of multiplicative noise in nonlinear syste
can lead to effects unpredictable from a deterministic
proach and specific to the parametric character of the fl
tuations. It is remarkable that, in multiplicative stochas
processes, the most probable values of the relevant varia
do not necessarily coincide with the deterministic station
points, and, as a consequence, the threshold condition
qualitative changes in the probability density can depend
only on the deterministic parameters, as it happens in a
tive processes, but also on the noise strength. In studie
the emergence of state-dependent fluctuations in the ma
scopic dynamics of diverse physical systems, it was sho
analytically that, for particular zero-dimensional models, t
property leads to the appearance of the analog of an equ
rium phase transition with effective order parameter a
critical temperature both depending on the intensity of
fluctuations@1,2#. The phenomenon, which had previous
been found by Stratonovich in the study of self-excited
cillations in electronic circuits with ‘‘external noise’’@3#,
was termed anoise-induced transition@4#, and its relevance
in different contexts has frequently been pointed out@2#. Re-
cently, similar behavior has been found in the oscillatio
induced by parametric broadband noise in a pendulum@5#; it
has also been shown that these oscillations can be suppr
by the action of a parametric harmonic force@6#. The aim of
our work has been to understand analytically this supp
sion. To this end we have focused on an approxima
soluble model system that presents all the elements ne
sary for the occurrence of the effect. The results, which m
explicit the connection with a noise-induced transition who
critical point is changed by the driving force, provides
with the clues to control the output signal.

We have considered an underdamped harmonic oscill
parametrically driven by a harmonic action and perturbed
a quartic potential, a nonlinear frictional force, and a pa
metric broadband noise. Specifically, we have studied
Stratonovich stochastic equation@5,6#
PRE 591063-651X/99/59~2!/2439~4!/$15.00
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ẍ1e2b~11a ẋ2!ẋ1v0
2@11a cos~vat !

1e1/2j~ t !#~x2egx3!50, ~1!
where the presence of thee factor in some of the terms
indicates their perturbative character;b anda are parameters
of the frictional force;j(t) is the wide-band noise;a andva
are, respectively, the amplitude and frequency of the driv
term; andg gives the nonlinearity of the potential~for g
51/6 the model describes a pendulum with sufficiently sm
oscillations@5#!.

In the high-frequency regime,va@v0 , there are three
widely separate characteristic times in the problem: first,
period of the driving forceta52p/va ; second, the period
of the unperturbed harmonic oscillatort052p/v0 ; and
third, the time linked to the secular variations of the amp
tude and phase of the generated oscillations,tS , which, be-
cause of thee factor in Eq.~1!, is much longer thant0 . In
this limit, analytical solutions can be obtained. In effect, w
can assume that, given the magnitude of both the noise t
and the frictional force, their effect on the dynamics during
driving period is negligible; consequently, the method intr
duced by Landau in Ref.@7# to study the effect of a fast
forcing term on a Hamiltonian system can be used to aver
over the driving period the Hamiltonian part of our syste
Neglecting second-order terms ine, the thus obtained
coarse-grained system corresponds to a harmonic oscil
with an effective frequency given by

ve f5v0S 11
a2v0

2

2va
2 D 1/2

~2!

and perturbed by a quartic potential whose effective para
eter is

gef5gS112
a2v0

2

va
2 D. ~3!

Hence, the complete reduced system is described by
equation
2439 ©1999 The American Physical Society
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ẍ1ve f
2 x5e@22b~11a ẋ2!ẋ1v0

2ge f x
3#

2e1/2v0
2j~ t !~x2egx3!, ~4!

which can now be solved following the asymptotic metho
developed by Krylov and Bogoliubov in the study of nonli
ear oscillations@8# as they were subsequently applied
Stratonovich to stochastic systems@3#. In this sense, we
choose as definitions for the amplitude,A, and phase,c
5ve ft1w, of the oscillations the equationsx5A cos(veft

1w) and ẋ52ve fA sin(veft1w).
With these changes, Eq.~4! is reduced to a system of tw

first-order equations instandard form@3#, and the average o
the deterministic terms over the period of the oscillatorte f
52p/ve f can be readily carried out. Additionally, sincej(t)
is modeled as a zero-mean colored noise centered on
frequency 2v0 , with spectral density

S@j;v#52k~v!54ls2
v21~2v0!21l2

@v22~2v0!22l2#214l2v2 ~5!

and correlation function

k~t!5s2e2lutu cos~2v0t!, ~6!

it is clear that for a sufficiently small correlation time, 1/l
!1/(eve f), the average of the stochastic terms can also
performed. Then, after minor algebra we obtain that in fi
order the averaged equations are@3#

Ȧ5eFS2b1
v0

4

8vef
2

k~2vef!DA
2

3

4
bavef

2 A31e21/2
v0

2

2ve f
Az1~ t !G ,

ẇ5eF2
3v0

2

8ve f
ge fA

21m1e21/2
v0

2

2ve f
z2~ t !G , ~7!

where

m52
v0

4s2

4vef
2 F vef2v0

l214~vef2v0!
21

vef1v0

l214~vef1v0!
2G,0, ~8!

and the effective stochastic forcesz1(t) andz2(t) are Gauss-
ian white noise terms defined by

^z i~ t !&50,

^z i~ t !z i~ t8!&5Kid~ t2t8!, i 51,2, ~9!

with K15k(2ve f)/2 andK25k(0)1k(2ve f)/2.
In this framework the time evolution of the amplitude

given by a multiplicative stochastic process typical of t
previously mentionednoise-induced transitions@1,2#. An
important difference with that effect must nevertheless
noted. In our case, the broadband noisej(t) affects the am-
plitude in two ways: through thedeterministic term
v0

4k(2ve f)/(8ve f
2 )A, which changes the bifurcation point o

the deterministic dynamics, and through the stochastic fo
z1(t), which, entering multiplicatively in the equation, alte
the position of thedeterministicstationary points. For this
process, which has also been shown to be relevant in
study of ‘‘on-off intermittency’’ @9,10#, the steady-state
s
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probability density can be obtained analytically@1–3,5#, and,
in terms of the parameters

n5

28bvef
2

v0
4 1k~2vef!

2K1
, ~10!

L5
3bave f

4

v0
4K1

, ~11!

it reads

WSS~A!5H2Ln

G~n!
A2n21e2LA2

for n.0

d~A! for n<0.

~12!

From these results it is understood how, for certain val
of the amplitude and frequency of the parametric harmo
action, the oscillations generated by noise are suppresse
effect, in order to have oscillations it is necessary than
.0, which, in the absence of driving, implies having valu
of the noise intensity larger than the thresholdkcr(2v0)
58b/v0

2 . In contrast, when driving is present, the conditio
for the existence of oscillations isk(2ve f).8bve f

2 /v0
4 ,

and, taking into account the functional dependence ofve f
with a andva , it is evident that a higher noise intensity
required to generate the signal. More precisely, the osc
tions are suppressed if the amplitude of the driving fo
exceeds the critical valueacr

2 52(va /v0)2$v0
2k(2ve f)/

(8b)21%. These conclusions, which explain qualitative
part of the findings of Ref.@6#, are clearly illustrated in Figs
1 and 2, where the root-mean-square amplitude of the os
lations (̂ A2&)1/25(n/L)1/2 is depicted versus the frequenc
and amplitude of the driving force, respectively. It stands
that it is the quotient betweena andva that determines the
suppression of the output signal. The fact thatk(2ve f)
,k(2v0) contributes also to a rise of the threshold, but, d
to the broadband structure of the noise spectrum, o
higher-order corrections derive from it. The creation by
high-frequency driving field ofdressedpotentials has previ-
ously been used in a different context to implement chan
in the dynamics of a stochastic system@11#; in our case the
critical point for the onset of the oscillations and the me

FIG. 1. Root-mean-square amplitude vs the amplitude of
driving force forva520 ~a! andva540 ~b!. The rest of the param-
eters of the system are in both casesa5100,b50.1,l5100, and
k(2v0)/kcr(2v0)51.5.
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value of their amplitude can be controlled with a prop
choice of the parameters of the driving force.

The time evolution of the phase corresponds to an a
tive stochastic process. Because of the coupling, due to
nonlinear part of the potential, ofA andw in this process, we
cannot obtain analytical solutions for the complete proba
ity density. However, the analysis of the mean frequency

^ċ&5ve f1eF2
3v0

2

8ve f
ge f

n

L
1mG ~13!

gives some information about the characteristics of the g
erated signal. Contrary to the increase of the freque
caused by the driving term and given by Eq.~2!, there is a
reduction that has its origin, first, in the nonlinear charac
of the potential, and second, in the twofold influence
noise: thedeterministicterm m lowers the mean frequency
and the stochastic forcez2(t) changes the peak frequency
the spectrum. This decrease, irrelevant in our model, can
important in a less restrictive regime. Spectral changes w
a similar origin have been found in bidimensional stocha
systems with deterministic dynamics inside bifurcation
gions@12#. Note that the occurrence in our reduced system
a regime offully developed oscillations@3# can be interpreted
as the generation induced by noise of alimit cycle.

From this study it is evident that the nonlinearity of th
potential is not a necessary condition for the existence of
effect; it is in fact the nonlinear friction with the particula
functional form assumed that plays the key role in the
pearance of the instability in our model. Therefore, to ha
insight into the qualitative changes detected in the spectr
varying the noise intensity@5#, we setg50 ande51 in Eq.
~7!, and, following Refs.@3# and @13#, we find an approxi-
mation for the spectrum of this new system, which, althou
not equivalent to our starting model, is suitable to ident
the mechanisms responsible for specific spectral features
this end, we take as correlation time for the amplitude,tA ,
the expression

tA5
8ve f

2

v0
4K1n

S n2
G2~n11/2!

G2~n! D , ~14!

FIG. 2. Root-mean-square amplitude vs the frequency of
driving force fora53 ~a! anda510 ~b!. The rest of the parameter
are the same as in Fig. 1.
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which was obtained in Ref.@3# applying a decoupling ansat
for the moments, and which, despite its approximate valid
@14,15#, is useful in a first approach to the problem. In th
sense we have used it to obtain the spectrum as

S@x;v#5
^A&2

2 S D1

~v2ve f2m!21D1
2 1

D1

~v1ve f1m!21D1
2D

1
^A2&2^A&2

2 S D2

~v2ve f2m!21D2
2

1
D2

~v1ve f1m!21D2
2D , ~15!

e

FIG. 3. Approximate spectrum for the reduced system of Eq.~7!
with a5100,b50.1,l5100,g50, va520,a53, and
k(2v0)/kcr(2v0)51.2 ~a!, k(2v0)/kcr(2v0)52 ~b!, and
k(2v0)/kcr(2v0)53 ~c!.
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whereD15v0
4K2 /(8ve f

2 ) is the contribution to the width o
the signal that comes from the fluctuations in phase andD2
5D111/tA is the total width obtained when fluctuations
amplitude are also considered; obviously, the relative imp
tance of both terms depends on the variance of the ampli
^A2&2^A&25@n2G2(n11/2)/G2(n)#/L.

In Fig. 3 we plot this spectrum for three values of t
noise strength. Increasing noise levels give rise to a widen
of the signal and to a reduction of the peak frequency. Ev
tually a qualitative change takes place: coherence is c
pletely lost as the preferred frequency disappears. The
loss of coherence can be understood as the result of the
bined effect of the fluctuations in the two variables. We co
jecture that these effects along with the additional shift
frequency due to the nonlinearity of the potential can
relevant in the transitions observed in the spectra of m
general models@5#.

Concluding, we summarize our results in three m
points. First, in the high-frequency limit, the effect of th
parametric driving force on the studied system is jus
renormalizationof the potential, the fundamental frequen
being larger in thedressedpotential. As a consequence, th
critical point for the instability is changed, higher noise i
tensities being necessary to have the transition; addition
the strengths of the effective stochastic forces are reduce
the broadband noise is not centered at the double of the
fective fundamental frequency. Second, it is the coopera
effect of the nonlinear friction, with the particular function
form assumed, and the parametric noise that gives rise to
oscillations; the nonlinearity in the potential, which
changed by the driving force, affects in first order the f
quency of the output signal, whereas it has only a seco
order effect on the position of the critical point. Third, th
mean frequency diminishes as the noise strength increa
this property combined with the widening of the signal c
partially account for the qualitative changes detected in
spectrum. The generalization of our model by including a
ditive fluctuations is straightforward. Indeed, the analyti
results of Ref.@1# reveal that the presence of weak additi
noise in the equation for the amplitude has a considera
e
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effect for n,1/2, leading to the disappearance of the sing
larity at the origin and therefore preventing the comple
suppression of the oscillations@6#; in contrast, it does not
produce essential changes in the probability density out
the threshold region. It is worth comparing this behav
with the effect of additive noise on ‘‘on-off intermittency’
@9#.

The model presented accounts for the main characteris
of the output signal and gives an analytical criterion for
suppression. The mechanism behind the noise-generate
cillations is the same one responsible for self-excited os
lations in nonlinear systems@3#: the parametric noise alter
the deterministic dynamics in an effective way, leading
the onset of a bifurcation at a certain strength, and sub
quently changing the amplitude and frequency of thelimit
cycle. The similarity with anoise-induced transition@1# is
also evident. However, it must be noted that for that p
nomenon theorder parameterof the transition was identified
with the most probable value of the relevant variableAm ,
which equals$(2n21)/(2L)%1/2 for n>1/2 and zero else-
where@1,3#; in our case the oscillations exist merely whenA
has nonzero values (n.0) @5#. Hence, the thresholds fo
both processes are defined in a different way. The differe
with the so-callednoise-induced nonequilibrium phase tran
sitions, recently found in the study of spatially distribute
systems subject to multiplicative noise@16#, is clear: despite
the similar terminology, the problems are different.

Finally, we emphasize the necessity of thee factor in the
equations to guarantee the difference in time scales and
sequently the applicability of the used methodology. In sp
of this limitation, the model gives clues to analyze som
features of the effect that are still present under less res
tive conditions, and sets up a framework to evaluate the r
tive importance of the different elements that can be inc
porated in the modeling of real physical problems. Sin
state-dependent noise emerges in a natural way in the
scription of diverse processes, or it can conversely be
cluded in the dynamics in an externally controllable way, t
possible relevance of the phenomenon in a wide variety
contexts is clear.
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